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Main Results

Implementation of a tool in HOL Light for a complete formal
verification of nonlinear inequalities.

The tool can verify general multivariate polynomial and
non-polynomial inequalities in the form

∀x ∈ Rn, x ∈ D =⇒ f (x) < 0.

where D = {(x1, . . . , xn) | ai ≤ xi ≤ bi} = [a,b].

Formal verification of nonlinear inequalities in the Flyspeck project (a
formal proof of the Kepler conjecture).

The tool can be downloaded from the Flyspeck project repository at
http://code.google.com/p/flyspeck/downloads/list
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Examples of Verified Inequalities

General Inequalities

A polynomial inequality

− 1√
3
≤ x ≤

√
2, −

√
π ≤ y ≤ 1

=⇒ x2y − xy 4 + y 6 + x4 − 7 > −7.17995

A non-polynomial inequality

0 ≤ x ≤ 1 =⇒ arctan(x)− x

1 + 0.28x2
< 0.005
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Examples of Verified Inequalities

Flyspeck Inequalities

Define ∆(x1, . . . , x6) = x1x4(−x1 + x2 + x3 − x4 + x5 + x6)

+ x2x5(x1 − x2 + x3 + x4 − x5 + x6)

+ x3x6(x1 + x2 − x3 + x4 + x5 − x6)

− x2x3x4 − x1x3x5 − x1x2x6 − x4x5x6,

∆y (y1, . . . , y6) = ∆(y 2
1 , . . . , y

2
6 ), ∆4 =

∂∆

∂x4
,

dih (y1, . . . , y6) =
π

2
− arctan2

(√
4y 2

1 ∆y (y1, . . . , y6),−∆4(y 2
1 , . . . , y

2
6 )

)
.

Let D = {x ∈ R6 | 2 ≤ xi ≤ 2.52}, then

∀x. x ∈ D =⇒ dih (x) < 1.893,

∀x. x ∈ D =⇒ ∆y (x) > 0.
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HOL Light

The system is implemented in the OCaml programming language.

A very simple logical core (less than 700 lines of code).

Contains a large library of formalized theorems.

John Harrison, the developer of HOL Light, contributed a lot to the
Flyspeck project by proving many important foundational theorems in
HOL Light.
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The Kepler Conjecture and the Flyspeck Project

Theorem

No packing of congruent balls in Euclidean three dimensional space has
density greater than that of the face-centered cubic packing.

The maximum density is π/
√

18 ≈ 0.74

In 1611, Johannes Kepler formulated the conjecture.

In 1831, Gauss established a special case of the conjecture.

In 1953, Fejes Tóth formulated a general strategy to confirm the
Kepler conjecture.

In 1998, Thomas Hales solved the conjecture (published in 2006).

In 2003, Hales launched the Flyspeck project.
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The Flyspeck Project

The goal of the Flyspeck project is a complete formal verification of
the Kepler conjecture.

The name of the project comes from the matching of the pattern
F*P*K (Formal Proof of Kepler) against the English dictionary.

There are 985 nonlinear inequalities in the Flyspeck project.

Involve arctangents, arccosines, square roots, rational expressions.

6–9 variables. Most inequalities contain 6 variables.

Each inequality has the following form:

∀x ∈ [a,b] =⇒ f1(x) < 0 ∨ . . . ∨ fk(x) < 0.

The official website: http://code.google.com/p/flyspeck/
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Overview of Verification Methods

Methods

Interval arithmetic.

Interval arithmetic with Taylor approximations.

Bernstein polynomials.

Subdivision of domains.
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Overview of Verification Methods

Some existing formalizations

Univariate inequalities in PVS based on Taylor interval arithmetic:
Marc Daumas, David Lester, and César Muñoz, Verified real number
calculations: A library for interval arithmetic

Multivariate polynomial inequalities in PVS based on Bernstein
polynomials.

I César Muñoz and Anthony Narkawicz, Formalization of a
Representation of Bernstein Polynomials and Applications to Global
Optimization

I Roland Zumkeller’s optimization program Sergei
http://code.google.com/p/sergei/
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Interval Arithmetic

Example

Prove x2
1 + x2

2 ≥ 0 when x1, x2 ∈ [0, 2]× [0, 1].
Interval computations yield:

0 ≤ x2
1 ≤ 4, 0 ≤ x2

2 ≤ 1,

0 ≤ x2
1 + x2

2 ≤ 5

and the inequality follows.

Dependency problem

Compute an interval for x − x when 0 ≤ x ≤ 2.
We get −2 ≤ x − x ≤ 2, meanwhile the best answer is 0 ≤ x − x ≤ 0.
Intervals become wide very quickly.
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Interval Arithmetic with Taylor Approximations

f (x) = f (y) +
k∑

i=1

f (k)(y)(x − y)k

k!
+ error .

To find an interval bound of f (x) on a domain a ≤ x ≤ b, find interval
bounds of f (y), f ′(y), . . . , f (k)(y) and an interval bound of the error term
for all a ≤ x ≤ b.

Example

f (x) = x − x2, 0.1 ≤ x ≤ 0.3, y = 0.2

We find f (y) = 0.16, f ′(y) = 0.6, and f ′′(x) = −2 for all x .

0.16− 0.6× 0.1− 1

2
× 0.12 × 2 ≤ f (x) ≤ 0.16 + 0.6× 0.1 +

1

2
× 0.12 × 2,

Taylor approximation: 0.09 ≤ x − x2 ≤ 0.23 when 0.1 ≤ x ≤ 0.3.
Interval arithmetic: 0.01 ≤ x − x2 ≤ 0.29.
Exact result: 0.09 ≤ x − x2 ≤ 0.21.
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Domain Subdivision

To improve the accuracy of estimates (in all methods above), the
domain of interest can be subdivided into smaller domains and
estimates are computed on each subdomain.

If a strict inequality f (x) < r holds on a domain

D = [a,b] = {ai ≤ xi ≤ bi},

then all method presented above will prove this inequality if D = ∪Di

is divided into sufficiently small subdomains Di (conditions on f are
also required, like f ∈ C 2(D)).

Example (Interval Arithmetic)

Prove x2 > −10−10 when x ∈ [−1, 2].
Interval arithmetic gives: x ∈ [−1, 2] =⇒ −2 ≤ x ≤ 4.
Divide the domain into two subdomains: [−1, 2] = [−1, 0] ∪ [0, 2].
Interval arithmetic: x ∈ [−1, 0] =⇒ 0 ≤ x ≤ 1, x ∈ [0, 2] =⇒ 0 ≤ x ≤ 4,
and the inequality follows.
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Main Estimate

Consider a rectangular domain

D = {ai ≤ xi ≤ bi | i = 1, . . . , n} = [a,b] ⊂ Rn.

Take y ∈ D and find w s.t. w ≥ 0 and |x− y| ≤ w (componentwise).
Denote partial derivatives of f as fi , second partial derivatives as fij .

Theorem

Suppose f ∈ C 2(D) and
∣∣∣fij(x)

∣∣∣ ≤ dij for all x ∈ D. Then

∀x. x ∈ D =⇒
∣∣∣f (x)− f (y)−

n∑
i=1

|fi (y)|wi

∣∣∣ ≤ 1

2

n∑
i ,j=1

dijwiwj .

To compute an interval bound of f on D, it is required to compute
intervals for f (y), fi (y) (i = 1, . . . , n), fij(x) (i , j = 1, . . . , n, x ∈ D).
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Verification Procedure

Goal: verify f (x) < 0 on D = [a,b].

1 y := (a + b)/2. Find w ≥ 0 s.t. y − a ≤ w and b− y ≤ w.

2 Find an upper bound u of f with the Taylor approximation.

3 If u < 0, then done. Otherwise [4]

4 Find j s.t. wj ≥ wi for all i . Let D(1) = [a, c(1)] and D(2) = [c(2),b]

where c
(1)
i = bi , i 6= j , and c

(1)
j = yj ; c

(2)
i = ai , i 6= j , and c

(2)
j = yj .

5 Repeat the procedure for D = D(1) and for D = D(2).
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Monotonicity Arguments

Decreasing function

If fk(x) ≤ 0 on [a,b], then it is sufficient to verify f (x) < 0 on [a, c] where
ci = bi , i 6= k , ck = ak .

Increasing function

If fk(x) ≥ 0 on [a,b], then it is sufficient to verify f (x) < 0 on [c,b] where
ci = ai , i 6= k , ck = bk .
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Formalization Overview

Formal Taylor intervals.

Solution certificates.
I Computed informally.
I An input for a formal verification procedure.

Formal verification procedures.
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Formal Taylor Interval: Definitions

CD(x, z, y,w)

⇐⇒ (∀i , 1 ≤ i ≤ n =⇒ xi ≤ yi ≤ zi ∧ max{yi − xi , zi − yi} ≤ wi ) .

LA(f , y, f lo , f hi , [(f lo
1 , f hi

1 ); . . . ; (f lo
n , f

hi
n )])

⇐⇒
(

f lo ≤ f (y) ≤ f hi ∧
(
∀i , f lo

i ≤
∂f

∂xi
(y) ≤ f hi

i

))
.

B2

(
f , x, z, [[f lo

1,1, f
hi

1,1]; [f lo
2,1, f

hi
2,1; f lo

2,2, f
hi

2,2]; . . . ; [f lo
n,1, f

hi
n,1; . . . ; f lo

n,n, f
hi
n,n]]

)
⇐⇒

(
∀p, p ∈ [x, z] =⇒

(
∀i j , j ≤ i =⇒ f lo

i ,j ≤
∂2f

∂xj∂xi
(p) ≤ f hi

i ,j

))
.

TI(f , x, z, y,w, f lo , f hi , dlist , ddlist)⇐⇒ CD(x, z, y,w)

∧ f ∈ C 2([x, z]) ∧ LA(f , y, f lo , f hi , dlist) ∧ B2(f , x, z, ddlist).

Alexey Solovyev (University of Pittsburgh) Verification of Nonlinear Inequalities NFM 2013 15 / 27



Formal Taylor Interval: Operations

Implemented operations

Addition: +

Subtraction: −
Multiplication: ×
Division: /

Square root:
√

Arctangent: arctan

Arccosine: arccos
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Formal Taylor Interval: Bounds

Theorem

TI(f ,x, z, y,w, f lo , f hi , [d1], [[dd1,1]; [dd2,1; dd2,2]])

∧ w1|d1|+ w2|d2| ≤ b

∧ w1(w1|dd1,1|) + w2(w2|dd2,2|+ 2w1|dd2,1|) ≤ e

∧ b + 2−1e ≤ a ∧ l ≤ f lo − a ∧ f hi + a ≤ h

=⇒
(
∀p, p ∈ [x, z] =⇒ f (p) ∈ [l , h]

)
.

∣∣∣di

∣∣∣ =
∣∣∣(f lo

i , f
hi
i )
∣∣∣ = max{−f lo

i , f
hi
i }.

Analogous results hold for other dimensions and for bounds of partial
derivatives.
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Solution Certificate

A simplified OCaml definition of the solution certificate

Certificate =

| Result_pass

| Result_glue of int * Certificate * Certificate

| Result_mono of bool * int * Certificate

No information about subdomains is explicitly given: subdomains can be
reconstructed from a certificate.
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Result pass

Verification procedure

Find a formal Taylor interval for the current subdomain.

Formally compute the upper bound for the Taylor interval.

Verify that the upper bound is less than 0.

Return a theorem of the form

` ∀x. x ∈ D =⇒ f (x) < 0.
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Result glue (j , Cert1, Cert2)

Verification procedure

Subdivide the current domain along the j-th coordinate.

Verify the inequality for the first subdomain using Cert1.

Verify the inequality for the second subdomain using Cert2.

Glue the results with the theorem

`(∀i . i 6= j =⇒ c
(1)
i = bi ∧ c

(2)
i = ai )

∧ c
(1)
j = yj ∧ c

(2)
j = yj

∧
(
∀x. x ∈ [a, c(1)] =⇒ f (x) < 0

)
∧ (∀x. x ∈ [c(2),b] =⇒ f (x) < 0)

=⇒ (∀x. x ∈ [a,b] =⇒ f (x) < 0)
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Result mono (increasing, j , Cert)

Verification procedure

Reduce the dimension of the current domain.

Verify the inequality for the new domain with Cert.

Formally estimate bounds of the j-th partial derivative on the full
domain.

Apply the theorem (for the increasing case):

`f ∈ C 2([a,b]) ∧ (∀i . i 6= j =⇒ ci = ai ) ∧ cj = bj

∧ (∀y. y ∈ [a,b] =⇒ 0 ≤ fj(y))

∧ (∀x. x ∈ [c,b] =⇒ f (x) < 0)

=⇒ (∀x. x ∈ [a,b] =⇒ f (x) < 0)
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Example: A Simple Polynomial Inequality

Verify x3
1 + x2 > −1.1 when (x1, x2) ∈ [−1, 1]× [0, 1] = [(−1, 0), (1, 1)].

Equivalent problem: −1.1− (x3
1 + x2) < 0 when (x1, x2) ∈ [−1, 1]× [0, 1].

Solution Certificate

Mono 2 [

Glue 1 [

Glue 1 [

Pass (on [-1,-0.5] x [0,0]);

Pass (on [-0.5,0] x [0,0])

];

Pass (on [0,1] x [0,0])

]
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Example: A Simple Polynomial Inequality

Initial domain: ` CD
(
(−1, 0), (1, 1), (0, 0.5), (1, 0.5)

)
.

Mono 2 ` ∀p. p ∈ [−1, 1]× [0, 1] =⇒ ∂
∂x2

(λx .− 1.1− (x3
1 + x2)) p ≤ 0

Restricted domain: ` CD
(
(−1, 0), (1, 0), (0, 0), (1, 0)

)

Glue 1 Domain 1: ` CD
(
(−1, 0), (0, 0), (−0.5, 0), (0.5, 0)

)

Glue 1 Domain 1: ` CD
(
(−1, 0), (−0.5, 0), (−0.75, 0), (0.25, 0)

)
Pass ` ∀p. p ∈ [−1,−0.5]× [0, 0] =⇒ −1.1− (p3

1 +p2) ≤ −0.06874

Domain 2: ` CD
(
(−0.5, 0), (0, 0), (−0.25, 0), (0.25, 0)

)
Pass ` ∀p. p ∈ [−0.5, 0]× [0, 0] =⇒ −1.1− (p3

1 + p2) ≤ −0.94367
Result ` ∀p. p ∈ [−1, 0]× [0, 0] =⇒ −1.1− (p3

1 + p2) < 0

Domain 2: ` CD
(
(0, 0), (1, 0), (0.5, 0), (0.5, 0)

)
Pass ` ∀p. p ∈ [0, 1]× [0, 0] =⇒ −1.1− (p3

1 + p2) ≤ −0.1

Result ` ∀p. p ∈ [−1, 1]× [0, 0] =⇒ −1.1− (p3
1 + p2) < 0

Final Result ` ∀p. p ∈ [−1, 1]× [0, 1] =⇒ −1.1− (p3
1 + p2) < 0.
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1 +p2) ≤ −0.06874
Domain 2: ` CD

(
(−0.5, 0), (0, 0), (−0.25, 0), (0.25, 0)

)
Pass ` ∀p. p ∈ [−0.5, 0]× [0, 0] =⇒ −1.1− (p3

1 + p2) ≤ −0.94367
Result ` ∀p. p ∈ [−1, 0]× [0, 0] =⇒ −1.1− (p3

1 + p2) < 0

Domain 2: ` CD
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(0, 0), (1, 0), (0.5, 0), (0.5, 0)

)
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Result ` ∀p. p ∈ [−1, 1]× [0, 0] =⇒ −1.1− (p3
1 + p2) < 0

Final Result ` ∀p. p ∈ [−1, 1]× [0, 1] =⇒ −1.1− (p3
1 + p2) < 0.
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Performance Tests: Polynomial Inequalities

Test Polynomial Problems

Prove m < p(x) for all x ∈ [a, b].

schwefel: (x1 − x2
2 )2 + (x2 − 1)2 + (x1 − x2

3 )2 + (x3 − 1)2,
m = −5.8806× 10−10, [a, b] = [(−10,−10,−10), (10, 10, 10)]

lv: x1x2
2 + x1x2

3 + x1x2
4 − 1.1x1 + 1, m = −20.801,

[a, b] = [(−2,−2,−2,−2), (2, 2, 2, 2)]

magnetism: x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1,

m = −0.25001,
[a, b] = [(−1,−1,−1,−1,−1,−1,−1), (1, 1, 1, 1, 1, 1, 1)]

heart: −x1x3
6 + 3x1x6x2

7 − x3x3
7 + 3x3x7x2

6 − x2x3
5 + 3x2x5x2

8 − x4x3
8 +

3x4x8x2
5 − 0.9563453, m = −1.7435,

[a, b] = [(−0.1, 0.4,−0.7,−0.7, 0.1,−0.1,−0.3,−1.1),
(0.4, 1,−0.4, 0.4, 0.2, 0.2, 1.1,−0.3)]
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Performance Tests: Polynomial Inequalities

Table: Test Results for Polynomial Inequalities in PVS and HOL Light

Inequality ID # variables PVS Bernstein (s) HOL Light (s)

schwefel 3 10.23 26.329
lv 4 4.75 1.875
magnetism 7 160.44 7.007
heart 8 79.68 17.298
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Performance Tests: Flyspeck Inequalities

Inequality ID formal (s) informal (s)

2485876245a 5.530 0
4559601669b 4.679 0
4717061266 27.1 0
5512912661 8.860 0.002
6096597438a 0.071 0
6843920790 2.824 0.002
SDCCMGA b 9.012 0.006
7067938795 431 0.070
5490182221 1726 0.375
3318775219 17091 8.000
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Optimization Strategies

Implemented optimization techniques

Efficient natural number arithmetic which works with arbitrary base
representations of numerals in HOL Light.

Formal floating-point and interval arithmetic for real numbers in HOL
Light.

Cached arithmetic.

Adaptive arithmetic precision.

Future work

Verification of groups of inequalities (on common subdomains).

Do not recompute bounds of second partial derivative on small
subdomains.

Optimized evaluation of formal Taylor intervals.
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Thank you!
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